Absolute accuracy analysis and improvement of a hybrid 6-DOF medical robot

نویسندگان

  • Ahmed Joubair
  • Long Fei Zhao
  • Pascal Bigras
  • Ilian A. Bonev
چکیده

Purpose – The purpose of this paper is to describe a calibration method developed to improve the accuracy of a six degrees-of-freedom medical robot. The proposed calibration approach aims to enhance the robot’s accuracy in a specific target workspace. A comparison of five observability indices is also done in order to choose the most appropriate calibration robot configurations. Design/methodology/approach – The calibration method is based on the forward kinematic approach, which uses a nonlinear optimization model. The used experimental data are 84 endeffector positions, which are measured using a laser tracker. The calibration configurations are chosen through an observability analysis, while the validation after calibration is carried out in 336 positions within the target workspace. Findings – Simulations allowed finding the most appropriate observability index for choosing the optimal calibration configurations. They also showed the ability of our calibration model to identify most of the considered robot’s parameters, despite measurement errors. Experimental tests confirmed the simulation findings and showed that the robot’s mean position error is reduced from 3.992 mm before calibration to 0.387 mm after, and the maximum error is reduced from 5.957 mm to 0.851 mm. Originality/value – This paper presents a calibration method which makes it possible to accurately identify the kinematic errors for a novel medical robot. Also, this paper presents a comparison between the five observability indices proposed in literature. The proposed method might be applied to any industrial or medical robot similar to the robot studied in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANFIS+PID Hybrid Controller Design for Controlling of a 6-DOF Robot Manipulator and its Error Convergence Analysis

In this paper, an ANFIS+PID hybrid control policy has been addressed to control a 6-degree-of freedom (6-DOF) robotic manipulator. Then its error convergence has been also evaluated. The ability to formulate and estimate the system uncertainties and disturbances along with system dynamics and rejecting the disturbances effect are some advantages of the proposed method in   comparing with the co...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

Kinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach

In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...

متن کامل

Use of a Force-Torque Sensor for Self-Calibration of a 6-DOF Medical Robot

The aim of this paper is to improve the position accuracy of a six degree of freedom medical robot. The improvement in accuracy is achieved without the use of any external measurement device. Instead, this work presents a novel calibration approach based on using an embedded force-torque sensor to identify the robot's kinematic parameters and thereby enhance the positioning accuracy. A simulati...

متن کامل

Integrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics

In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Industrial Robot

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015